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Abstract

This paper presents a novel framework based on the evo-
lutionary neural network to solve the generalized Black-
Scholes equation arising in the financial market efficiently
and accurately. We first employ evolutionary neural networks
to parameterize the Partial Differential Equations (PDEs) in-
volved in option pricing. This approach allows us to simplify
the Black-Scholes PDEs and convert them into the corre-
sponding Ordinary Differential Equations (ODEs). Thus we
can use standard ODE solvers such as Euler’s method to
solve the simplified ODE problem. The proposed framework
is flexible and can handle various boundary conditions and
terminal conditions, allowing customization based on specific
market requirements and scenarios. Moreover, our method
offers a reliable and deterministic solution methodology for
the pricing framework, as it does not rely on stochastic train-
ing. Unlike other approaches that incorporate stochastic el-
ements in their training process, our method eliminates the
need for such training and provides consistent results. This
deterministic nature enhances the reliability and stability of
our approach, making it well-suited for real-world applica-
tions in option pricing and financial markets. The experiments
on multiple settings are carried out to illustrate the applicabil-
ity and accuracy of the proposed framework.

Introduction
In financial markets, options are commonly utilized by in-
vestors for arbitrage, speculation or to hedge against invest-
ment risks. Consequently, determining the fair price of an
option contract, known as option pricing, has emerged as
a crucial problem in both theoretical research and practical
implementations. The Black-Scholes option pricing model
(Black and Scholes 1973), which was used to price Euro-
pean options originally, was the first widely adopted mathe-
matical formula for pricing options. It has a significant influ-
ence on modern financial pricing. Some subsequent models
(Leland 1985) have been proposed to address its limitations
and better align with observed market characteristics. One
interesting extension of the Black-Scholes models in option
pricing is the modeling of multiple underlying assets, which
is commonly referred to as the multi-asset Black-Scholes
model (Khodayari and Ranjbar 2018).
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Nonetheless, closed-form formulas for option prices, even
for European vanilla options, are generally unavailable
or difficult to derive under these advanced models, non-
homogeneous volatility for instance. Therefore, several nu-
merical methods have been proposed to approximate solu-
tions for option pricing problems. One widely employed
method to address the option pricing problems is to solve the
corresponding PDEs using finite difference methods (Sal-
vador, Oosterlee, and Van Der Meer 2020; Kim et al. 2020)
or finite element methods (Prohl 2019). Another alternative
method is the Monte Carlo (MC) simulation method, which
offers flexibility and ease of implementation, although it
converges slowly to the exact solution and comes at the ex-
pense of computational time. In this paper, we mainly study
the approach to address option pricing problems by solving
the corresponding PDEs.

Although solving PDEs is effective for option pricing,
classic PDE solvers often encounter the curse of dimen-
sionality, where the computational cost exponentially in-
creases with the problem’s dimensionality (Poggio and Liao
2018). Therefore, developing efficient numerical algorithms
for high-dimensional PDEs has been one of the most attrac-
tive challenges in option pricing problems.

Machine learning and deep learning have gained signif-
icant traction in recent years and have made remarkable
strides in diverse scientific domains (Mikalef and Gupta
2021), including text classification, sentiment analysis, im-
age recognition, speech recognition, natural language pro-
cessing, and computational mathematics, among others.
Therefore, with the universal approximation property of
deep neural networks (DNNs), it is both intuitive and con-
venient to utilize DNNs as approximators for solutions to
high-dimensional PDEs.

In this paper, we present a novel framework for pricing
multi-asset options and exotic options. Our framework lever-
ages the exceptional representational power of DNNs and
effectively transforms any PDE model with diverse termi-
nal payoff conditions into an ODE model. Notably, our ap-
proach efficiently tackles high-dimensional PDEs while mit-
igating the curse of dimensionality. It offers a reliable and
deterministic methodology, eliminating the need for stochas-
tic training. This enhances the robustness and stability of the
pricing framework. The proposed framework is flexible and
can handle various boundary conditions and terminal pay-

AAAI Summer Symposium Series (SuSS-23)

46



offs, allowing customization based on specific market re-
quirements and scenarios.

The main contributions of this paper are: 1) We propose
a novel framework that effectively reduces complex PDEs
to ODE. This framework allows for a more efficient and
tractable solution approach; 2) The proposed framework is
applicable to pricing options with various terminal payoff
functions, making it versatile and applicable to a wide range
of financial instruments; 3) We demonstrated the capabil-
ity of the framework to handle nonlinear PDEs. By leverag-
ing the power of DNNs, our approach is able to effectively
tackle exotic and nonlinear option pricing problems.

Problem Statement
In this section, we introduce the notations used throughout
the paper and formulate the problem of pricing options by
solving the corresponding PDEs.

In the valuation of a European option contract based on
the underlying stock price without dividends, the Black-
Scholes PDE plays a crucial role. The corresponding equa-
tion can be derived from Itô’s Lemma using either a repli-
cating portfolio approach or a martingale approach.

We denote the option price by v(s, t), then the Black-
Scholes equation is expressed as follows:

∂v(s, t)

∂t
+

1

2
σ2s2

∂2v(s, t)

∂2s
+ rs

∂v(s, t)

∂s
= rv(s, t). (1)

where t ≤ T is the time, σ represents the constant volatility
and r is the risk-free interest rate. Indeed, the Black-Scholes
PDE is accompanied by a final condition that represents the
specific payoff of the option at the expiration time T .

v(s, T ) = vT (sT ,K). (2)

While the classical Black-Scholes equation has made
significant progress, it is important to consider the im-
pact of transaction costs (Soner and Touzi 1999), large in-
vestor preferences (Merton 1973), and incomplete markets
(Wilmott and Schönbucher 2000). These factors can ren-
der the classical option pricing model unrealistic. Conse-
quently, the pricing equations may transform into strongly or
fully nonlinear, potentially degenerate, parabolic diffusion-
convection equations. In such scenarios, the volatility σ can
vary with time and depend on the stock price s as well as the
derivatives of the option price v itself.

∂v(s, t)

∂t
+
1

2
σ̂2(t, s, vs, vss)s

2 ∂
2v(s, t)

∂2s
+rs

∂v

∂s
= rv. (3)

Furthermore, it is natural and practical to extend equa-
tion (1) from pricing single-asset options to pricing multi-
asset options, as the latter are more commonly encountered
in real-world markets. Let v (s1, s2, . . . , sn, t) be the value
of the option, where si is the underlying i-th asset value. We
consider the following generalized n-asset BS equation:

∂v(s, t)

∂t
+

1

2

n∑
i,j=1

σiσjρijsisj
∂2v(s, t)

∂si∂sj

+ r
n∑

i=1

si
∂v(s, t)

∂si
= rv. (4)

for (s, t) = (s1, s2, . . . , sn, t) ∈ Rn
+ × [0, T ). The corre-

sponding final condition for equation (4) is

v(s, T ) = vT (sT ,K) (5)

Here, r is an interest rate, σi is a constant volatility of the
i-th asset, and ρij is the correlation coefficient between i-th
and j-th underlying assets.

To simplify the notation and unify these PDE problems,
we denoted the operator LBS by

LBSv = rv − 1

2

n∑
i,j=1

σ̂iσ̂jρijsisj
∂2v

∂si∂sj
− r

n∑
i=1

si
∂v

∂si
.

(6)
Then the PDE problem (1), (3) and (4) can be formulated in
an united form:

∂v(s, t)

∂t
= LBSv(s, t), v(s, T ) = vT (sT ,K). (7)

Therefore, the pricing of options can be framed as the task
of solving those nonlinear PDEs (7).

Methodology
In this section, we present the detailed methodology of the
proposed framework. We consider a spatial domain S ⊆ Rd,
then Equation (7) can be expressed as the evolution of a
time-dependent field v : S × [0, T ] → R. The field v be-
longs to a function space V at all times, and its dynamics are
governed by the equation

∂v(s, t)

∂t
= f(t, s, v, vsi , vsisj ), (s, t) ∈ S × [0, T ], (8)

subject to the terminal condition (5), where vT ∈ V . By ap-
propriately choosing the function f , equation (8) can repre-
sent different equations of interest. We assume that suitable
boundary conditions exist for Equation (8), ensuring that it
is well-posed for all t ∈ [0, T ]. This implies that the solution
to the equation exists, is unique, and depends continuously
on the terminal condition vT ∈ V .

Parametrizing the Solution
To proceed, we adopt a parametric representation of the so-
lution v(s, t) at time t as V (s, θ(t)) ∈ V , where θ(t) ∈ Θ
are the parameters, and V : V × Θ → R. This is achieved
by utilizing the ansatz:

v(s, t) = V (s, θ(t)), (s, θ(t)) ∈ S ×Θ. (9)

It is important to highlight that the dependence of V
on θ(t) can be nonlinear, which stands in contrast to the
linear dependence found in the majority of classical ap-
proximations in scientific computing. For the representa-
tion in Equation (9) to be complete, ensuring that for any
v(s, t) ∈ V there exists at least one θ(t) ∈ Θ such that
V (s, θ(t)) ≡ v(s, t), the parameter space Θ is typically an
infinite-dimensional function space.

In practical applications, we are often interested in sit-
uations where the parametric representation V (s, θ(t)) de-
pends on a finite-dimensional parameter θ(t). For example,
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in a DNN, θ(t) represents the vector of adjustable parame-
ters or weights in the network. Although the number of these
parameters can be large, it is important to note that they are
still finite in number.

In this case, the use of Eq. (9) with DNN approximation
as an ansatz for the solution of Eq. (8) introduces approx-
imation errors. It is important to be aware of these errors
and aim to control their magnitude throughout the solution
process.

Evolutionary Neural Networks
An evolutionary neural network (ENN) (Du and Zaki 2021)
is a mathematical mapping that takes an input vector x ∈ Rd

and transforms it into an output vector z ∈ Rm at time t.
This transformation is achieved by composing a series of
vector-valued functions known as layers. In an L-layer net-
work, there are L such layers, each consisting of βl neurons.

The output of an L-layer network can be expressed as z =
ENN(x; θ(t)), where

ENN(x; θ(t)) := hL

(
·,θL(t)

)
◦ · · · ◦ h1

(
·,θ1(t)

)
(x).
(10)

For the l-th layer, where 1 ≤ l ≤ L, we have

hl

(
zl; θ

l(t)
)
= σl (Wl(t)zl(t) + bl(t)) ,

Wl(t) ∈ Rβl+1×βl , zl(t) ∈ Rβl , bl(t) ∈ Rβl+1 ,

with z1 = x, β1 = d ,βL = m and σl is activation func-
tions.

Controlling the Dynamics of θ(t)
To control the approximation error in the ansatz solution,
we introduce the residual function rt(θ,η, s), defined in
Equation (11), which quantifies the discrepancy between the
left-hand side and the right-hand side of the Equation (9).
This residual function depends on the parameters θ, the time
derivative η = θ̇(t), and the spatial variable s.

rt(θ,η, s) := |∇θV (s, θ(t)) · η − f(t, s, V (s, θ(t)))|2.
(11)

To minimize the approximation error, we aim to find the time
derivative θ̇(t) such that for all t > 0. It satisfies the mini-
mization problem:

θ̇(t) ∈ argmin
η

Lt(θ(t),η), (12)

where Lt(θ,η) is the objective function defined as:

Lt(θ,η) =
1

2

∫
S
rt(θ,η, s)ds. (13)

By solving the minimization problem for each time step t,
we can iteratively update the parameters θ(t), leading to an
approximation dynamics for the original PDE (i.e. Eq. (8))
solution.

Fortunately, the minimization problem (12) has an ex-
plicit form, which leads to solving the corresponding Euler-
Lagrange equation (14):

∇ηLt(θ(t), θ̇(t)) = 0. (14)

Algorithm 1: ENN-PDE Solver

Require: The PDE (8), terminal condition (5) and regular-
ity term λ.

1: Set tk, k = 0, . . . , N , t0 = 0, tN = T , θk = θ(tk).
2: Train θN by equation (18).
3: while k ≥ 0 do
4: Calculate the coefficient C(θk+1) and b(θk+1).
5: Update θk explicitly by equation

(C(θk+1) + λI)
θk+1 − θk

τk
= b(θk+1).

6: end while
7: return Discretized solution V (s, θk), k = 0, ..., N .

In explicit form, equation (14) becomes a system of ordi-
nary differential equations (ODEs) for θ(t):

C(θ(t))θ̇ = b(θ(t)), θ(T ) = θT , (15)

where we define:

C(θ) =

∫
S
(∇θV (s, θ(t)))T∇θV (s, θ(t))ds, (16)

b(θ) =

∫
S
∇θV (s, θ(t))f(s, V (s, θ(t)))ds. (17)

The terminal condition θT can be obtained, for exam-
ple, by minimizing the least-squares loss between vT (s) and
V (s, θ):

θT ∈ argmin

∫
S
|vT (s)− V (s, θ)|2ds. (18)

Similarly, boundary conditions can be enforced naturally
by choosing V (s, θ(t)) such that these conditions are satis-
fied for all θ(t) ∈ Θ. In summary, the minimization problem
leads to solving the system of ODEs (15) for θ(t), which is
determined by the matrix C(θ) and the vector b(θ). The
terminal condition θT can be obtained through minimiza-
tion and boundary conditions can be enforced by choosing
appropriate V (s, θ(t)). Solving this system allows us to find
the optimal parameter trajectory θ(t) that minimizes the ap-
proximation error and satisfies the given conditions.

To numerically approximate the system of ODEs in equa-
tion (15), we employed the explicit Euler scheme to up-
date θk forwardly. Let θk denote the numerical approxi-
mation to θ(tk). The times tk are defined recursively as
t0 = 0, tN = T , and subsequent time points are obtained
by adding the time step τk adaptively. The time steps, de-
noted by τk > 0, can be chosen to be non-uniform.

(C(θk+1) + λI)
θk+1 − θk

τk
= b(θk+1), (19)

where λI is a diagonal matrix added to ensure the invert-
ibility of the coefficient matrix. In addition to the explicit
Euler scheme, other numerical schemes such as high-order
schemes and implicit schemes can be employed. The entire
algorithm to solve problem (8) is shown in Algorithm 1.
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Related Work
To solve equation (7), one notable approach called DeepB-
SDE numerical method was proposed by (E, Han, and
Jentzen 2017). It tackles the difficulties arising from the
backward characteristic of equation (6). DeepBSDEs have
shown promise in overcoming the curse of dimensionality
associated with certain types of PDEs. However, their appli-
cation has been primarily limited to numerical experiments
involving the Black-Scholes equation with constant coeffi-
cients, which is different from our settings.

The Physics-Informed Neural Networks (PINNs) (Raissi,
Perdikaris, and Karniadakis 2019) have gained significant
attention in recent years for their remarkable performance
in solving PDEs. Recently, (Tanios 2021) successfully ap-
plied PINNs to directly solve Black-Scholes equations, and
(P. Villarino, Leitao, and Garcı́a Rodrı́guez 2023) introduced
improvements to the methodology by addressing boundary
conditions. Furthermore, (Zang et al. 2020) presented the
WAN method, which provides an approach to solve weak
solutions of PDEs. Nonetheless, these methods encounter
challenges in effectively training the neural networks and
selecting appropriate hyperparameters.

Experiments
In this section, we present an evaluation of the ENN-PDE
solver on various options, including the vanilla European
call option, European call option with transaction cost,
down-and-out barrier option, and exchange option on multi-
ple assets.

Implementation Details. To facilitate the computations,
we transform the original infinite domain into a finite do-
main by restricting s up to smax. Additionally, we rescale
the domain to [0, 1]d without loss of generality. We set
s ∈ [0, 1]d, K = 0.4, r = 0.05, σ = 0.25,T = 1. The
neural network architecture used in our approach is fully
connected, comprising 6 hidden layers with 60 neurons per
layer. We apply a tanh activation function to enhance the
network’s representational capacity. For all the experiments
conducted, we utilize the Monte Carlo method to approxi-
mate the integrals involved in the computations.

Case 1: Vanilla European Call Option
The vanilla European call option with a terminal payoff
v(s, T ) = (sT −K)+ has an analytic solution:

vc(s, t) = sN (d1)−Ke−rτN (d2) , (20)

where d1 =
log(s/K)+(r+0.5σ2)τ

σ
√
τ

, d2 = d1−σ
√
τ , τ := T−

t, and N(·) represents the cumulative distribution function
(c.d.f.) of the standard normal distribution.

The ENN ansatz can be expressed as equation (21) to im-
pose the one-side boundary condition V (0,θ(t)) = 0.

V (s, θ(t)) = s · ENN(s; θ(t)). (21)

In our experiment, we set τk = 10−3, λ = 10−7. The
results are shown in Figure 1. It shows that the ENN-PDE
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Figure 1. Vanilla European Call Option: compare ENN-PDE
predictions and analytic solutions at four timestamps.

solver effectively and accurately approximated the analyt-
ical solution of the vanilla European call option. Further-
more, as time progressed, the ENN-PDE showed strong con-
vergence towards the steady state of the analytical solution,
further validating the accuracy and efficacy of our proposed
method.

Case 2: Call Option with Transaction Cost
For the European call option with transaction cost, we con-
sider a Black-Scholes equation (3) with the modified volatil-
ity (Leland 1985) to model the influence of transaction costs.

σ̂2 = σ2(1 +

√
2

π

κ

σ
√
δt
sign(vss)), (22)

where vss is the second derivative of v, κ stands for the
round trip transaction cost per unit and δt is the transaction
frequency.

In the experiment, the ENN ansatz is the same as equa-
tion (21), and we set κ = 0.05, δt = 0.01, λ = 10−7,
τk = 10−3. Figure 2 shows the excellent approximation of
the reference solution by the ENN-PDE solver indicating
that our solver provides a robust and reliable approach for
pricing options in realistic market conditions.

Case 3: Down-and-Out Call Option
A European-style down-and-out call option is a financial
derivative that has a similar payoff structure to a regular Eu-
ropean call option but with an additional barrier condition.
This option pays out the standard call payoff (ST − K)+

at its expiration, but only if the underlying asset price St

(where t ≤ T ) has not fallen to or below a predetermined
barrier level B during the option’s lifetime. If at any point
before expiration, the underlying asset price reaches or goes
below the barrier level of B, the option becomes worthless.

In this case, the ENN ansatz can be expressed as
equation (23) to impose the one-side boundary condition
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Figure 2. European Call Option with Transaction Cost: com-
pare ENN-PDE predictions with reference solutions (finite
difference method with ∆x = 0.0001 and ∆t = 0.001) at
four timestamps.

V (B, θ(t)) = 0.
V (s, θ(t)) = (s−B) · ENN(s; θ(t)). (23)

helloThe analytical solution of this down-and-out call op-
tion is given by the following equation

v(s, t) = vc(s, t)− (
B

s
)

2r
σ2 −1vc(

B2

s
, t), (24)

where vc is defined in equation (20), the analytic solution of
vanilla European call option, and B is less than the strike
price K.

In our experiment, we set B = 0.35, λ = 10−7, τk =
10−3. Figure 3 demonstrates the consistency between the
ENN-PDE solver and the analytical solution, highlighting
the power of our framework in pricing exotic options. The
close agreement between the two solutions validates the ac-
curacy and reliability of our approach in tackling exotic op-
tion pricing problems.

Case 4: Multi-Assets Option Pricing
In addition to pricing options on a single underlying asset,
our approach extends to pricing multi-asset options. Specifi-
cally, we focus on the case of two underlying assets, formu-
lating the problem as a PDE problem (4) with n = 2. By
specifying different payoff functions (i.e. Eq. (25)), various
options can be defined, such as exchange options, rainbow
options, or average put options.

We specifically address the exchange option, for which an
analytic solution known as Margrabe’s formula exists. The
payoff function for an exchange option is given by:

v(s1(T ), s2(T )) = (s1(T )− s2(T ))
+. (25)

According to Margrabe’s formula (Margrabe 1978), the
fair value of a European exchange option at a time can be
expressed as

v(s1, s2, t) = s1(t)N(d1)− s2(t)N(d2), (26)
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Figure 3. Down-and-Out Call Option: compare ENN-PDE
predictions and analytic solutions at four timestamps.

where d1 = (2 log(s1(t)/s2(t))+σ2)(T−t)

2σ
√
T−t

, d2 = d1−σ
√
T − t,

and σ =
√
σ2
1 + σ2

2 − 2σ1σ2ρ.
In this case, the ENN ansatz can be expressed as

V (s1, s2,θ(t)) = ENN(s1, s2;θ(t)). (27)
We set r = 0.05, σ1 = 0.25, σ2 = 0.20, ρ = 0.1, the evolv-
ing parameters are τk = 10−3, λ = 10−8 and the results are
shown in Figure 4. Our method demonstrates exceptional
approximation of the analytic solution, even in the presence
of non-smooth terminal payoffs such as the exchange op-
tion. Although the non-smoothness of the terminal payoff in-
troduces initial approximation errors, our ENN-PDE solver
does not amplify these errors as time evolves. This character-
istic highlights the stability and robustness of our approach,
allowing for accurate and reliable pricing of options over
time. The ability to mitigate and control approximation er-
rors is a significant advantage of our method, as it ensures
the accuracy and consistency of the pricing framework.

Conclusion
Our paper introduces a novel framework for pricing options
using evolutionary neural networks. We demonstrate the ef-
fectiveness of our approach in addressing exotic options,
options with transaction costs, and multi-asset option pric-
ing. A key advantage of our framework is its deterministic
and reliable solution methodology, eliminating the need for
stochastic training. This enhances the robustness and stabil-
ity of the pricing framework, making it suitable for real-
world applications. Additionally, our framework provides
flexibility in handling various boundary conditions and ter-
minal payoffs, allowing customization for specific market
requirements. This adaptability makes it a versatile tool for
option pricing in different market contexts. In conclusion,
our approach offers a powerful and practical solution for
option pricing by combining evolutionary neural networks
and partial differential equations. Through empirical exper-
iments, we demonstrate its effectiveness and applicability.
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Figure 4. Exchange Option: compare ENN-PDE predictions and analytic solutions at four timestamps. Up row: NN predictions;
Down row: Error between NN predictions and analytic solution |V (s1, s2,θ(t))− v(s1, s2, t)|2.

We believe our work opens up new possibilities for pric-
ing complex options and provides valuable insights for the
financial industry. Future research directions could involve
exploring the application of our framework to other path-
dependent derivative instruments and extending it to han-
dle coupled stochastic pricing models. These advancements
would further contribute to the field of option pricing and
expand the scope of our framework’s applicability.
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